Generally, differential equations calculator provides detailed solution
Online differential equations calculator allows you to solve:
Including detailed solutions for:
[✔] First-order differential equations
[✔] Linear homogeneous and inhomogeneous first and second order equations
[✔] A equations with separable variables
Examples of solvable differential equations:
[✔] Simple first-order differential equations
[✔] Differential equations with separable variables
[✔] Inhomogeneous linear differential equation of first order
[✔] Bernoulli differential equation
[✔] Exact differential equations
[✔] Linear homogeneous second order differential equations with constant coefficients
[✔] Inhomogeneous linear second order differential equations with constant coefficients
[✔] Differential equations, allowing reduction of the order
[✔] Linear homogeneous and inhomogeneous differential equations of higher order with constant coefficients
[✔] Supported all math symbols and functions. For example: sin(x), cos(x), exp(x), tan(x), ctan(x) and other.
[✔] Suported complex variables (solve complex equations)
The Calculator contain several features:
[✔] Several examples
[✔] Сorrect input expression errors
Examples for solve:
y' = x + e^x - 1
y' = 2x/(x^2 - 7)^(1/3)
e^y*dy = (x + sin(2x))dx
y' = y*(x^2 + e^x)
y' - 2*x*y/(1+x^2) = 1 + x^2
y'' + 3*y' = 0
x*y'' - xy' + y = 0
y'' - 2y' = (x^2 + 1)*e^x
x*y'' - xy' + y = x^2 + 1
(x^2 - y^2)dx - 2xydy = 0
y'''' + y''' - 5y'' + y' - 6y = x*cos(x) + sin(x)
4y^3*y'' = y^4 - 1
通常,微分方程计算器提供详细的解决方案
在线微分方程计算器可让您解决:
包括以下方面的详细解决方案:
[✔]一阶微分方程
[✔]线性齐次和非齐次的一阶和二阶方程
[✔]具有可分离变量的方程
可解微分方程的示例:
[✔]简单的一阶微分方程
[✔]具有可分离变量的微分方程
[✔]一阶不均匀线性微分方程
[✔]伯努利微分方程
[✔]精确的微分方程
[✔]具有常数系数的线性齐次二阶微分方程
[✔]具有常数系数的非均匀线性二阶微分方程
[✔]微分方程,可减少阶数
[✔]具有恒定系数的高阶线性齐次和非齐次微分方程
[✔]支持所有数学符号和功能。例如:sin(x),cos(x),exp(x),tan(x),ctan(x)等。
[✔]支持复杂变量(求解复杂方程)
计算器包含以下功能:
[✔]几个例子
[✔]正确输入表达式错误
解决的例子:
y'= x + e ^ x-1
y'= 2x /(x ^ 2-7)^(1/3)
e ^ y * dy =(x + sin(2x))dx
y'= y *(x ^ 2 + e ^ x)
y'-2 * x * y /(1 + x ^ 2)= 1 + x ^ 2
y''+ 3 * y'= 0
x * y''-xy'+ y = 0
y''-2y'=(x ^ 2 +1)* e ^ x
x * y''-xy'+ y = x ^ 2 +1
(x ^ 2-y ^ 2)dx-2xydy = 0
y''''+ y'''-5y''+ y'-6y = x * cos(x)+ sin(x)
4y ^ 3 * y''= y ^ 4-1